(4x+8)/x^2-4=5/6

Simple and best practice solution for (4x+8)/x^2-4=5/6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+8)/x^2-4=5/6 equation:



(4x+8)/x^2-4=5/6
We move all terms to the left:
(4x+8)/x^2-4-(5/6)=0
Domain of the equation: x^2!=0
x^2!=0/
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
(4x+8)/x^2-4-(+5/6)=0
We get rid of parentheses
(4x+8)/x^2-4-5/6=0
We calculate fractions
(-5x^2)/6x^2+(24x+48)/6x^2-4=0
We multiply all the terms by the denominator
(-5x^2)+(24x+48)-4*6x^2=0
Wy multiply elements
(-5x^2)-24x^2+(24x+48)=0
We get rid of parentheses
-5x^2-24x^2+24x+48=0
We add all the numbers together, and all the variables
-29x^2+24x+48=0
a = -29; b = 24; c = +48;
Δ = b2-4ac
Δ = 242-4·(-29)·48
Δ = 6144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6144}=\sqrt{1024*6}=\sqrt{1024}*\sqrt{6}=32\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-32\sqrt{6}}{2*-29}=\frac{-24-32\sqrt{6}}{-58} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+32\sqrt{6}}{2*-29}=\frac{-24+32\sqrt{6}}{-58} $

See similar equations:

| (4+x)+(2x+3)=127 | | 17^-4x=15x-10 | | 20=0.65x | | 72/4=9x | | 2^x+12=16^x | | 2(6x+3)=5(x-3) | | 6x-7=9x-4 | | 20.69+1.02x=42.11 | | x-1/3-4x+1/4=1/12 | | 4.29+1.34x=73.97 | | 1+8x=97 | | 52.82+20.62x=94.06 | | 4s+22=58 | | 19.87+s=22.87 | | 2/m=m/70 | | 6.22s=99.52 | | W2+3w+2=0 | | 4s+1=89 | | s+2=97 | | s+18=90 | | 3s+19=52 | | 3+2z=49 | | 3s+2=49 | | (2x-24)+92=180 | | 6+s=50 | | (4x-30)=(3x+13)=180 | | (4x-30)=(3x+13) | | 5u-7u=12 | | |v|-16=-10 | | -6(w-2)=-3w+27 | | -5y+36=-7(y-8) | | -9(y-4)=-6y+42 |

Equations solver categories